The Next Step

Mathematics Applications for Adults

Book 14014 – Whole Numbers

INTRODUCTION

Why Math?

The most important reason for learning math is that it teaches us how to think. Math is more than adding and subtracting, which can easily be done on a calculator; it teaches us how to organize thoughts, analyze information, and better understand the world around us.

Employers often have to re-educate their employees to meet the demands of our more complex technological society. For example, more and more, we must be able to enter data into computers, read computer displays, and interpret results. These demands require math skills beyond simple arithmetic.

Everyone Is Capable of Learning Math

There is no **type** of person for whom math comes easily. Even mathematicians and scientists spend a lot of time working on a single problem. Success in math is related to practice, patience, confidence in ability, and hard work.

It is true that some people can solve problems or compute more quickly, but speed is not always a measure of understanding. Being "faster" is related to **more practice or experience.** For example, the reason why math teachers can work problems quickly is because they've done them so many times before, not because they have "mathematical minds".

Working with something that is familiar is natural and easy. For example, when cooking from a recipe we have used many times before or playing a familiar game, we feel confident. We automatically know what we need to do and what to expect. Sometimes, we don't even need to think. However, when using a recipe for the **first** time or playing a game for the **first** time, we must concentrate on each step. We double-check that we have done everything right, and even then we fret about the outcome. The same is true with math. When encountering problems for the very first time, **everyone must have patience** to understand the problem and work through it correctly.

It's Never Too Late to Learn

One of the main reasons people don't succeed in math is that they don't start at the right place. **IMPORTANT! You must begin where** *you* **need to begin.** Could you hit a homerun if you hadn't figured out which end of the bat had to make contact with the ball? Why should learning math be any different?

If it has been a while since your last math class, **you must determine what level math you should take.** A teacher or trained tutor can help determine this with a few placement tests and questions.

Sometimes a few tutoring sessions can help you fill gaps in your knowledge or help you remember some of the things you have simply forgotten. It could also be the case where your foundations may be weak and it would be better for you to relearn the basics. **Get some help** to determine what is best for you.

Feeling good about ourselves is what all of us are ultimately striving for, and nothing feels better than conquering something that gives us difficulty. This takes a great deal of courage and the ability to rebound from many setbacks. This is a natural part of the learning process, and when the work is done and we can look back at our success, nothing feels better.

Where's the best place to hide if you're scared?

Inside a math book because there is safety in numbers.

Artist Unknown

OUTLINE

Mathematics - Book 14014

Whole Numbers
Number/Word Recognition
orally name each number when presented with a list of
random Arabic numbers (1,000+).
convert Arabic numbers to Roman numerals and vice versa
(I - XXXIX1 - 39).
correctly write the number words for Arabic numbers $(0 - $
1,000).
correctly write the Arabic numerals for any number word
(0 - 1,000).
Place Value
recognize the place value of each digit of a number to the
million's place.
determine how many hundred thousands, thousands,
hundreds, tens and ones in any number
(0 - 1,000,000).
Counting
count orally from $0 - 1,000,000$ starting at any point in
between those numbers.
count orally by 2's, 5's, and 10's to 100.
write all the even numbers from 2 - 100 and all the odd
numbers from 1 - 99.
order numbers from greatest to least and least to greatest. $(0 - 1.000.000)$.

Addition
find the sum of whole numbers up to 6 digits.
use addition facts to compute sums up to and including 18.
Subtraction
subtract two whole numbers up to 6 digits (using
borrowing/regrouping).
use subtraction facts to compute differences up to and
including 18.
apply addition/subtraction skills by completing an
incomplete equation (e.g. $14 + ? = 37$).
Multiplication
multiply 3 digit factors by 3 digit factors.
write the times tables to 12×12 (within a specified time).
multiply by 1, 10, 100 quickly (within a specified time).
Division
divide 3 digit factors by 3 digit factors, expressing any
remainders by "r".
write division facts to $144 \div 12$.
divide by 1, 10, 100 quickly (within a specified time).
Word Problems with Whole Numbers
solve one/two step problems with addition, subtraction,
multiplication or division of whole numbers.

THE NEXT STEP

Book 14014

Whole Numbers

Number Recognition

Digit is a counting word. A digit is any of the numerals from 1 to 9. The word "digit" is also the name for a finger. So number digits can be counted on finger digits.

Our modern system of counting probably came from counting on fingers. Fingers and hands were among the earliest known calculators!

A CLOSER LOOK AT ROMAN NUMERALS

Roman numerals were created over 2,000 years ago. They are still used today. You can find Roman numerals on clock and watch faces, on monument and building inscriptions, and on official papers, magazines, and books. The Roman numeral system uses letters to represent numbers. Combinations of these letters represent other numbers.

$$I = 1$$

 $V = 5$
 $X = 10$

Combining Roman Numerals

To make the Roman numeral for 2, I is added to I, so II = 2 (and II + I = III, or 3).

1 = I 2 = I + I or II3 = I + I + I or III

- 1) As a rule, no letter should be repeated more than three times.
- 2) When a letter representing a number of lesser value appears to the left of a letter of greater value, the lesser value is subtracted from the greater value.

To make the Roman 4, subtract one from five, or V - I = IV

4 = V - I or IVfive minus one one less than five

9 = X - I or IXten minus one one less than ten Get to know the Roman numerals from 1 to 39:

1 = I	21 = XXI
2 = II	22 = XXII
3 = III	23 = XXIII
4 = IV	24 = XXIV
5 = V	25 = XXV
6 = VI	26 = XXVI
7 = VII	27 = XXVII
8 = VIII	28 = XXVIII
9 = IX	29 = XXIX
10 = X	30 = XXX
11 = XI	31 = XXXI
12 = XII	32 = XXXII
13 = XIII	33 = XXXIII
14 = XIV	34 = XXXIV
15 = XV	35 = XXXV
16 = XVI	36 = XXXVI
17 = XVII	37 = XXXVII
18 = XVIII	38 = XXXVIII
19 = XIX	39 = XXXIX
$20 = \mathbf{X}\mathbf{X}$	

Practice Exercise

Fill in the blanks with the correct Roman Numeral.

Number/Word Recognition

Every number can be written two ways. It can be written as a numeral. Or it can be written as a word. The numeral and word stand for the same thing.

Numeral	Word
0	zero
1	one
2	two

3	three
4	four
5	five
6	six
7	seven
8	eight
9	nine

Learn to say these 2-place numbers:

10	ten
11	eleven
12	twelve
13	thirteen
14	fourteen
15	fifteen
16	sixteen
17	seventeen
18	eighteen
19	nineteen

The 2-place numbers go from 10 (ten) to 99 (ninety-nine). We have just learned about the 2-place numbers from 10 to 19. Now learn these 2-place numbers:

20	twenty
21	twenty-one
22	twenty-two
23	twenty-three
24	twenty-four
25	twenty-five
26	twenty-six
27	twenty-seven

twenty-eight
twenty-nine
thirty
thirty-one
thirty-two
thirty-three
thirty-four
thirty-five
thirty-six
thirty-seven
thirty-eight
thirty-nine
forty
forty-one
forty-two
forty-three
forty-four
forty-five
forty-six
forty-seven
forty-eight
forty-nine
fifty
fifty-one
fifty-two
fifty-three
fifty-four
fifty-five
fifty-six
fifty-seven
fifty-eight
fifty-nine
sixty

61	sixty-one
62	sixty-two
63	sixty-three
64	sixty-four
65	sixty-five
66	sixty-six
67	sixty-seven
68	sixty-eight
69	sixty-nine
70	seventy
71	seventy-one
72	seventy-two
73	seventy-three
74	seventy-four
75	seventy-five
76	seventy-six
77	seventy-seven
78	seventy-eight
79	seventy-nine
80	eighty
81	eighty-one
82	eighty-two
83	eighty-three
84	eighty-four
85	eighty-five
86	eighty-six
87	eighty-seven
88	eighty-eight
89	eighty-nine
90	ninety
91	ninety-one
92	ninety-two
93	ninety-three

94	ninety-four
95	ninety-five
96	ninety-six
97	ninety-seven
98	ninety-eight
99	ninety-nine

The number 99 is the greatest 2-place number. The next number in order is 100 (one hundred).

100 is one more than 99.It is a 3-place number.It has three numerals: 1, 0, and 0.They stand for 1 hundred, 0 tens, and 0 ones

The greatest 3-place number is 999 (nine hundred ninety-nine). It stands for 9 hundreds, 9 tens, and 9 ones.

Every 3-place number tells how many hundreds, tens, and ones the number stands for.

The number 999 is the greatest 3-place number. The next number in order is 1,000 (one thousand). It is one more than 999. It is a 4-place number. It has four numerals: 1, 0, 0, and 0. They stand for 1 thousand, 0 hundreds, 0 tens, and 0 ones.

We use a comma after the number in the thousands' place. The comma makes large numbers easier to read.

Practice Exercise

Read the number word and write the number.

1.	one hundred fifty-four	154
2.	twenty-seven	
3.	one thousand, four	
	hundred seventy-eight	
4.	six hundred fifty-nine	
5.	ninety	
6.	one thousand, four	
	hundred sixty-four	
7.	four hundred fifty-eight	
8.	sixty-six	
9.	one thousand, eight	
	hundred ninety-eight	
10.	five hundred twenty	
11.	four hundred fifty-three	
12.	one thousand, four	
	hundred seventy-two	
13.	five hundred fifty-five	
14.	two hundred five	

Write the numeral as a number word. The first one is already done for you.

1.	505	five hundred five
2.	308 _	
3.	1,557 _	
4.	63	

5.	1,325	
6.	98	
7.	23	
8.	1,624	
9.	87	
10.	6	
11.	1,050	
12.	831	
13.	50	
14.	774	
15.	85	
16.	1.321	
17.	1.694	
18.	117	
	-	

Place Value

In the number *111*, each numeral *1* means a different number: *one*, *ten*, and *one hundred*. How can the numeral *1* stand for so many numbers? That's called *place value*. The *value* of a numeral depends on what *place* it's in. If our number system didn't use place value, we would need a lot more than ten numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9)----we'd need millions!

hundred	S	tens		on	es	
1		1		1		
1 x 10 x	10	® 1 x	10	R	1	
100	+	10	+	1	=	111

To read the place value of numerals in a number, read from left to right. Each column has a value 10 times greater than the column to its right.

What do these numbers have in common?

4,321 1,234 3,412 2,143

You probably noticed that they are all 4-**digit** numbers, but did you notice that all four numbers are made up of the same digits: 1, 2, 3, and 4? The digits are the same, but each number has a different value. This is because the digits are in different **places** in each number, and in our number system the place of the digit tells you its value. In other words, each digit in a number has a **place value**.

Below, each number is arranged with each digit under the name of the place in which it stands:

thousands	hundreds	tens	units or ones
4	3	2	1
1	2	3	4
3	4	1	2
2	1	4	3

Notice that the 4 in the first number is in the thousands place. That means it is worth 4 thousand. In the second number, the 4 is in the units or ones place. It is worth 4 ones or just plain 4. In the third number, the 4 is in the hundreds place, and it is worth 4 hundred. In the last number, the 4 is in the tens place. That means it is worth 4 tens or 40.

Periods

Three places in the place value chart make up a *period*. Periods are always counted from the right---from the "ones" column---of a number. Periods are separated in numerals by commas.

Millions Period			Thou	Ones Period				
Hundred Millions	Ten Millions	Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones
100,000,000	10,000,000	1,000,000	100,000	10,000	1,000	100	10	1
900,000,000	90,000,000	9,000,000	900,000	90,000	9,000	900	90	9

Millions, Thousands, Hundreds, Tens, and Ones Write the place value of the bold number in each numeral.

1. 732,6 <u>8</u> 7	Tens	2. 3, <u>7</u> 44	
3. 493,67 <u>4</u> ,512		4. 1 <u>8</u> ,491	
5. 46,643,7 <u>7</u> 7		6. 4,12 <u>3</u> ,693	
7. 1,763,5 <u>4</u> 2		8. 4,64 <u>5</u>	
9. 73,96 <u>3</u>		10. 89 <u>9</u> ,484,776	
11. 1 <u>2</u> ,886,455		12. 922,61 <u>1</u>	
13. 353,491,67 <u>7</u>		14. 88,4 <u>1</u> 3	
15. 6,53 <u>8</u>		16. 789,5 <u>4</u> 2	
17. 7,111,11 <u>6</u>		18. 75,2 <u>6</u> 8,819	
19. 5,885,92 <u>8</u>		20. 32, <u>1</u> 59,468	
21. 53,12 <u>7</u>		22. 7,1 <u>6</u> 3	
23. 33 <u>3</u> ,595,338		24. 24 <u>3</u> ,797	
25. <u>3</u> 1,934		26. 1, <u>3</u> 46	
27. 5,84 <u>2</u> ,269		28. <u>9</u> 23,486	
29. 541,689,85 <u>6</u>		30. 81,2 <u>3</u> 9,213	

Which is the greatest number?

That is, which has the most value?

21 29 27 Look at the numbers in the tens' place. They are all 2s! So we have to look at the ones' place to find which number is the greatest.

The numbers in the ones' place are 1, 9, and 7. We know that 9 stands for more ones than 1 or 7. So 29 is the greatest number. That is, 29 has the most value.

There is a pattern in our number system. The more places there are, the greater the number. The number 40 is greater than 4. The number 500 is greater than 50. The number 6,000 is greater than 600. The number 7,000,000 is greater than 7,000.

Expanded Notation

Each of us knows how to read the number 463. In words we say "four hundred sixty-three." Our number system suggests that the position or place of a digit determines its value. Thus, "four hundred sixty-three" really means four hundreds plus six tens plus three units or ones.

$$463 = 4 \ge 100 + 6 \ge 10 + 3$$

Any number, no matter how large, can be written in *expanded notation* by simply using decreasing multiples of 10, and working from left to right.

Example: Write 3,962,514 in expanded form. $3,962,514 = 3 \times 1,000,000 + 9 \times 100,000 + 6 \times 10,000 + 2 \times 1,000 + 5 \times 100 + 1 \times 10 + 4$

Counting

The set of counting numbers has no end. It can go on forever. The idea that counting numbers can go on and on is called *infinity*.

The set of *counting numbers*, or *natural numbers*, begins with the number 1 and continues into infinity.

{1,2,3,4,5,6,7,8,9,10...}

The set of *whole numbers* is the same as the set of counting numbers, except that it begins with **0**.

{0,1,2,3,4,5,6,7,8,9,10...}

All counting numbers are whole numbers. Zero is the only whole number that is not a counting number.

Even numbers include the numbers *0* and *2* and all numbers that can be divided evenly by *2*. *Odd numbers* are all numbers that cannot be divided evenly by *2*.

Odd and Even Numbers to 100

3 5 7 13 15 17 21 1 9 11 19 0 2 4 6 8 10 12 14 16 18 20 25 31 33 35 27 29 37 39 41 23 22 24 26 28 30 32 34 36 38 40 43 45 47 49 51 53 55 57 59 61 42 44 46 48 50 52 54 56 58 60 75 63 65 67 69 71 73 77 79 81 62 64 66 68 70 72 74 76 78 80 83 85 87 89 91 93 95 97 99 82 84 86 88 90 92 94 96 98 100

Skip Counting

To count by 2's, simply count all the even numbers: 0, 2, 4, 6, 8, 10...and so on.

To count by 5's: 0, 5, 10, 15, 20...and so on.

To count by 10's: 0, 10, 20, 30, 40...and so on.

To count by 100's: 0, 100, 200, 300, 400...and so on.

Ordering numbers means listing numbers from least to greatest, or from greatest to least. Two symbols are used in ordering.

29 < 63

1.	If you are counting by ones, which number comes						
	before 44?						
	□ 36						
	\square 45						
	\square 43						
	\square 41						
	□ 54						
2.	If you are counting by twos, which number comes						
	after 334?						
	□ 330						
	□ 336						
	□ 339						
	□ 338						
	324						
3.	Which number is missing in this pattern?						
	4540,, 4560, 4570, 4580						
	□ 4550						
	□ 4552						
	4555						
	4557						
	□ 4558						
4.	Which number is more than 63,000 but less than						
	68,000?						
	□ 71,000						
	□ 67,000						

		63,000
		77,000
		73,000
5.	If yo	ou are counting by fives, which number comes
	after	890,125?
		890,135
		890,120
		890,115
		890,130
		890,140
6.	Whi	ch pattern needs the number 236 in the blank
	spac	e?
		, 237, 238, 239
		239, 240,, 242
		237, 238,, 240
		240,, 242, 243
7.	Whi	ch number is missing in this pattern?
	43, _	, 33, 28, 23
		37
		40
		35
		42
		38
8.	Whi	ch answer has two more than 2 paintbrushes?

		1111
	5	
9.	Lool	x at the following list of numbers. If you arrange
	the n	numbers from least to greatest, which number
	5241	5266 5275 5377 5236 5307
		5266
		5241
		5377
		5236
		5307
		5275
10.	Look the n wou	at the following list of numbers. If you arrange numbers from least to greatest, which number ld come fourth?
	67,22	23, 67,241, 67,267, 67,186, 67,180, 67,183
		67,223
		67,267
		67,183
		67,241
		67,223
		67,186

Addition

Combining two or more numbers is called *addition*. The term for addition is *plus*, and the symbol for plus is +. The numbers that are combined in addition are called *addends* and together they form a new number called a *sum*.

2 ---- addends ---- 3+ 2 ---- sum ----- 4

Adding whole numbers is as simple as 2 + 2! To add two whole numbers, you can simply follow the number line and complete the addition fact.

CALVIN AND HOBBES By Bill Watterson

Calvin And Hobbes by Bill Watterson 11/22 Copyright 1986 by Universal Press Syndicate

Table of Addition Facts

+	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11
2	3	4	5	6	7	8	9	10	11	12
3	4	5	6	7	8	9	10	11	12	13
4 —	5	6	7	8	9	10	11	12	13	14
5	6	7	8	9	10	11	12	13	14	15
6	7	8	9	10	11	12	13	14	15	16
7	8	9	10	11	12	13	14	15	16	17
8	9	10	11	12	13	14	15	16	17	18
9	10	11	12	13	14	15	16	17	18	19
10	11	12	13	14	15	16	17	18	19	20

Regrouping Numbers in Addition

Addition often produces sums with a value greater than 9 in a given place. The value of ten is then *regrouped* (or *carried*) to the next place.

l	l	l	ones
thousands	hundreds	tens	
1,	3	4	3
+3,	7	9	8
5,	1	4	1

To explain addition another way, it can be done by adding the place value amounts separately.

e.g. 69

$$\frac{+8}{17}$$

$$\frac{60}{77}$$
(the 6 in the tens place means 6 tens or "60")

 \implies If there are not enough digits in each number to make even columns under each place value, then zeros may be used **before** a given number to make adding easier. Do <u>not</u> add zeros **after** a number because it changes the value of the whole number.

e.g. 69 + 8 + 125 could be added as:

069
008
<u>+125</u>

Solve for each of the given problems.

1.	97 <u>+ 92</u>	2.	57 <u>+ 88</u>	3.	32 <u>+ 38</u>	4.	6 + 7
5.	430 <u>+ 696</u>	6.	755 <u>+ 959</u>	7.	31 + 175	8.	14 <u>+ 995</u>
9.	236 + 221	10.	238 <u>+ 46</u>	11.	203 + 107	12.	266 + 51
13.	88 <u>+ 602</u>	14.	26 <u>+ 771</u>	15.	305 <u>+ 451</u>	16.	199 + 22
17.	5,555 <u>+ 867</u>	18.	6,161 <u>+ 4,319</u>	19.	2,724 + 7,867	20.	3,040 + 9,267
21.	42,309 <u>+46,923</u>	22.	41,801 +43,703	23.	12,603 <u>+85,133</u>	24.	10,976 +41,271
25.	573,785 <u>+309,841</u>	26.	672,778 +471,112	27.	991,124 <u>+719,054</u>	28.	211,126 +572,372

Solve for each of the given problems.

1. 31 + 40 =2. 564 + 313 =3. 133 + 67 =4. 717 + 638 =5. 8422 + 2785 =6. 21,847 + 70,892 =7. 754,789 + 984,711 =8. 50,618 + 63,436 + 661,520 =9. 6824 + 1130 + 32,554 + 48,291 =10. 89 + 724 + 2927 + 6460 =

Subtraction

"Taking away" one or more numbers from another number is called *subtraction*. The term for subtraction is *minus*, and the symbol for minus is -. The number being subtracted is called a *subtrahend*. The number being subtracted from is called a *minuend*. The new number left after subtracting is called a *remainder* or *difference*.

4 ---- minuend ---- 4 <u>- 2</u> --subtrahend - <u>- 1</u> 2 - difference ---- 3

The complete addition or subtraction "sentence" is called an *equation*. An equation has two parts. The two parts are separated by the *equal sign*, =. For example, *the minuend minus the subtrahend equals the difference*. An *addition fact*

or a *subtraction fact* is the name given to specific addition or subtraction equations.

-1 = 0
- 1 = 1
- 1 = 2
-1 = 3
- 1 = 4
- 1 = 5
- 1 = 6
- 1 = 7
- 1 = 8

Regrouping in Subtraction

Regrouping, sometimes called *borrowing*, is used when the subtrahend is greater than the minuend in a given place. Regrouping means to take a group of tens from the next greatest place to make a minuend great enough to complete the subtraction process.

	hundreds	tens	ones
343 - 9	3	3\4_	1 3 9
334	3	3	4

	hundreds	tens	ones
521	4 5 —	→112	→1 1
- 62	-	6	2
459	4	5	9

Solve for each of the given problems.

1.	59 – 41 =	2.	26 <u>- 5</u>	3.	95 <u>-40</u>	4.	63 <u>-60</u>
5.	343 - 55 =	6.	460 <u>-363</u>	7.	65 <u>-13</u>	8.	152 <u>-148</u>
9.	169 - 112 =	10.	43 <u>- 36</u>	11.	128 <u>- 11</u>	12.	132 <u>- 18</u>
13.	368 - 77 =	14.	453 <u>- 154</u>	15.	106 <u>- 54</u>	16.	209 <u>- 128</u>
17.	4,562 - 1,107 =	18.	9,378 <u>- 3,908</u>	19.	662 <u>- 442</u>	20.	6,514 <u>- 3,806</u>
21.	64,756 <u>- 60,697</u>	22.	79,421 <u>- 64,232</u>	23.	53,891 <u>- 51,823</u>	24.	42,634 <u>- 6,367</u>
25.	846,768 <u>- 219,311</u>	26.	887,818 -275,682	27.	552,579 <u>-228,458</u>	28.	744,631 <u>-233,943</u>

Solving Addition and Subtraction Equations

Inverse (opposite) operations are used to simplify an equation for solving.

One operation is involved with the unknown and the inverse operation is used to solve the equation.

Addition and subtraction are inverse operations.

Given an equation such as 7 + x = 10, the unknown x and 7 are *added*. Use the inverse operation subtraction. To solve for n, subtract 7 from 10. The unknown value is therefore 3.

Examples for addition and subtraction

Addition Problem	Solution
x + 15 = 20	x = 20 - 15 = 5
Subtraction Problem	Solution
x - 15 = 20	x = 20 + 15 = 35

Solve each equation. (Hint: Use inverse operation rules to solve)

- 1. 3 + y = 55 52 2. x 28 = 61
- 3. 11 = a 54 _____ 4. x + 68 = 167 _____

5.	4 = a - 16	6. $x + 85 = 138$
7.	x - 46 = 51	8. $33 + y = 36$
9.	5 = a - 30	10. $45 + y = 89$
11.	x + 35 = 91	12. $9 = a - 82$
13.	x - 38 = 31	14. $40 = a - 51$
15.	x - 3843 = 5909	16. $x + 97 = 181$
17.	18 + y = 100	18. $2 = a - 57$

Multiplication

Multiplication is a quick form of addition. By multiplying numbers together, you are really adding a series of one number to itself. For example, you can add 2 plus 2. Both 2 plus 2 and 2 times 2 equal 4.

But what if you wanted to calculate the number of days in five

weeks? You could add 7 days + 7 days or you could multiply 7 days times 5. Either way you arrive at 35, the number of days in five weeks.

$$7 + 7 + 7 + 7 + 7 = 35$$

5 x 7 = 35

Although multiplication is related to addition, the parts of multiplication are not known as addends. Instead, the parts are known as *multiplicands* and *multipliers*. A multiplication sentence, like an addition sentence, is called an *equation*. But a multiplication sentence results in a *product*, not a sum.

Multiples

Find the *multiples* of a number by multiplying it by other whole numbers. The multiples of 2, for example, are:

$0 \ge 2 = 0$	$2 \ge 3 = 6$
$1 \ge 2 = 2$	$2 \times 4 = 8$
$2 \ge 2 = 4$	$2 \ge 5 = 10$

... and so on.

r	r	r	1	1	1	1	1	1	1				
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5—	0	5	10	15	20	25	30	35	-40	-45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

As you can see, the multiples of 2 include 0, 2, 4, 6, 8, and 10. The list continues into infinity!

Multiplication, Step-by-Step

When the multiplicand and the multiplier are numbers with two or more digits, multiplication becomes a step-by-step process.

Look at 15 x 13:

1	5	First, multiply the
		ones 3 x 5. Write
Х	3	down the product
		so the ones columns

1 5 1 5 x 3	line up. Next, multiply the tens -3×1 ten. Line up the product with the tens
1 5	column.
3 0	— Zero is the place holder.
1 5	Last, add the ones and tens to find the
x 3	product of the equation.
1 5	
+ 3 0	

Here is a shorter way:

1	1. Multiply the ones: $3 \times 5 = 15$.
1 5	Put the 5 in the ones column and
	regroup the 1 to the tens column.
x 3 4 5	2. Multiply the tens: $3 \times 1 = 3$.
	3. Add the 1 that you regrouped to the 3, put the sum in the tens column.

Look at 265 x 23:

265	First, multiply the	265	Next multiply
	multiplicand by the		by the tens –
x 23	ones in the	x 23	2 x 5, 2 x 6,
	multiplier – 3 x 5,		and 2 x 2.
15	3 x 6, and 3 x 2.	15	Zero is the
18 0	Zero is the place	180	place holder.
<mark>6</mark> 00	holder.	600	
		100	
		1,200	
		4,000	

Last, add.

	265	
	x 23	
	15	
+	180	
+	600	
+	100	
+	1,200	
+	4,000	
	6,095	

Here is a shorter way:

11		
11		
265	1.	Multiply the ones: 3 x 265
		$3 \ge 5 = 15$ regroup the 1
x 23		$3 \ge 6 = 18$ plus the regrouped $1 = 12$
19;		
		regroup the 1
795		$3 \ge 2 = 6$ plus the regrouped $1 = 7$
5300	2.	Multiply the tens: 2 x 265
		0 is the place holder
6,095		$2 \ge 5 = 10$ regroup the 1
·		$2 \ge 6 = 12$ plus the regrouped $1 = 12$
13;		
,		regroup the 1
		$2 \times 2 - 4$ plus the regrouped $1 = 5$
	3.	Add 795 + 5300 = 6,095

Partial Product

A method of <u>multiplying</u> where the ones, tens, hundreds, and so on are multiplied separately and then the <u>products</u> added together *Examples*:

 $\frac{24}{\times 3}$ $\frac{12}{\times 60}$ $\frac{4}{72}$ Multiply the ones: $3 \times 4 = 12$ $\frac{1}{72}$

 $36 \ge 17 = 42 + 210 + 60 + 300 = 612$

When you multiply whole numbers, the *product* usually has a greater value than either the *multiplicand* or the *multiplier*.

But there are exceptions: A number multiplied by *1* is always equal to itself.

1		36
<u>x 1</u>	21 x 1 = 21	<u>x 1</u>
1		36

A number multiplied by $\boldsymbol{\theta}$ is always equal to $\boldsymbol{\theta}$.

1		36
x 0	$21 \ge 0$	x 0
0		-0-

To multiply a number by 10, add a 0 to the right of the number.

EXAMPLE

$$25 \times 10 = 250$$
 or $25 \frac{\times 10}{250}$

To multiply a number by 100, add two 0's to the right of the number.

EXAMPLE

$$36 \times 100 = 3,600$$
 or $36 \times \frac{x100}{3,600}$

Order Property of Multiplication

Two numbers can be <u>multiplied</u> in any order and the <u>product</u> is

the same *Example*: 3 X 2 = 6 2 X 3 = 6

Solve each problem.

1.		8 × 5	2.	7 × 48	3.	23 <u>× 8</u>	4.	40 × 75	5.	78 × 93
6.	×	8 425	7.	803 <u>× 7</u>	8.	51 × 628	9.	787 × 38	10.	780 × 71
11.	<u>×</u>	207 46	12.	749 <u>× 80</u>	13.	289 × 54	14.	511 <u>× 40</u>	15.	744 × 89
16.	×	332 34	17.	664 <u>× 35</u>	18.	441 <u>× 72</u>	19.	970 <u>× 67</u>	20.	288 × 59
21.	<u>×</u>	402 160	22.	261 × 929	23.	568 × 267	24.	409 × 834	25.	388 × 358
26.	×	500 749	27.	754 × 420	28.	103 × 621	29.	976 × 570	30.	280 × 167

- A. Find the value of each of the following.
 - 1. $395 \times 10 =$
 - 2. $609 \times 100 =$
 - 3. $236 \times 20 =$
 - 4. $320 \times 3 =$
 - 5. 895 x 329 =
 - 6. 993 x 748 =
 - 7. 431 x 100 =
 - 8. 905 x 10 =

Shoe by *Jeff MacNelly* 11/1 Copyright 1999 by Tribune Media Services, Inc.

Division

Division is the process of finding out how many times one number, the *divisor*, will fit into another number, the *dividend*. The division sentence results in a *quotient*. The signs of division are \div and /, and mean *divided by*. "/" and "-" are signs that are also used to mean *divided by* and are used with fractions (e.g. 1/3, <u>1</u>).

You can think of division as a series of repeated subtractions. For example, $40 \, 10$ could also be solved by subtracting 10 from 40 four times:

40 - 10 - 10 - 10 - 10 = 0

Because 10 can be subtracted four times, you can say that 40 can be divided by 10 four times, or 40, 10 = 4.

Many numbers do not fit evenly into other numbers. They are *not evenly divisible by* those numbers, and the number left over is called the *remainder*.

We would record the answer for the first question as 3 r 1 and for the second question as 2 r 6. The "r" stands for remainder.

To divide whole numbers, reverse the process of multiplication. For example, if $2 \times 7 = 14$ in a multiplication equation, then in a division sentence, 14 is the *dividend* and 7 is the *divisor* with a *quotient* of 2.

A whole number divided by *1* will always equal itself.

$$1, 1=1$$
 $1/21$ $36, 1=36$

Zero divided by a whole number will always equal θ .

$$0, 12 = 0$$
 $3/0$ $0/7 = 2$

Division, Step-by-Step

Where the dividend and divisor are numbers with two or more digits, division becomes a step-by-step process.

8/208 - <u>16</u>	First, round the divisor up - 8 rounds up to 10 - and estimate the number of 10s in 20. Answer: 2. Multiply the divisor $-8 \ge 2 - 100$
4	and subtract the product from the dividend.
26	Next, pull down the next digit from the
8/ 208	dividend -8 – and repeat the estimation
- 16	and subtraction process.
48	
- 48	
0	
26	Last, when you can subtract no more
8/208	you've found the quotient.
- 16	
48	
- 48	
0	— No remainder

First, round 23 to 25 and estimate the number of 25s in 27. Answer: 1. Multiply the divisor by $1 - 23 \times 1 - and$ subtract.

Next, pull down the next digit from the dividend -6 – and repeat the estimation and subtraction process.

Then, pull down the next digit, estimate, and subtract, until you can subtract no more.

0 — No remainder

Solve each problem.

1.	5 22	2.	9 77	3.	2 15
4.	11 850	5.	10 49	6.	6 166
7.	12 391	8.	2 11	9.	6 207
10.	8 522	11.	2 9	12.	10 62

A. Find the value of each of the following.

1. $430 \div 101 =$ 2. $850 \div 182 =$ 3. $40 \div 30 =$ 4. $264 \div 3 =$ 5. $952 \div 132 =$ 6. $934 \div 489 =$ 7. $221 \div 16 =$ 8. $560 \div 8 =$

Prime numbers are counting numbers that can be divided by only two numbers---*1* and themselves. A prime number can also be described as a counting number with only two factors, *1* and itself. The number *1*, because it can be divided only by itself, is *not* a prime number.

Prime Numbers to 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Averages

The most common way to find an *average* is to add up a list of numbers and divide the sum by the number of items on the list. Another word for average is *mean*.

$$3 + 4 + 6 + 8 + 9 = 30$$
 number of addends
 $30 \div 5 = 6$ So, the average of the numbers 3, 4, 6, 8

sum $-30 \div 5 = 6$ So, the average of the numbers 3, 4, 6, 8, and 9 is 6.

When do you need to calculate an average? Your grades may be based on the average of all your test scores. In sports, you might want to find out the average height of players on your favorite basketball team.

The height of the starters for this team is:

Ann	60"	
Jane	58"	
Cathy	57"	
Joy	52"	
Tanya	48"	The average height of these players is 55 inches.

Word Problems with Whole Numbers

Within every story (word) problem are several *clue words (key words)*. These words tell you the kind of math sentence (equation) to write to solve the problem.

Addition Clue Words	Subtraction Clue Words
add	subtract
sum	difference
total	take away
plus	less than
in all	are not
both	remain
together	decreased by
increased by	have or are left
all together	change (money problems)
combined	more
	fewer

Multiplication Clue Words

times product of multiplied by by (dimension) **Division Clue Words**

quotient of divided by half [or a fraction] split separated cut up parts shared equally

⇒ Division clue words are often the same as subtraction clue words. Divide when you know the total and are asked to find the size or number of "one part" or "each part."

Following a system of steps can increase your ability to accurately solve problems. Use these steps to solve word problems.

- 1. Read the problem carefully. Look up the meanings of unfamiliar words.
- 2. Organize or restate the given information.
- 3. State what is to be found.
- 4. Select a strategy (such as making a chart of working backward) and plan the steps to solve the problem.

- 5. Decide on an approximate answer before solving the problem.
- 6. Work the steps to solve the problem.
- 7. Check the final result. Does your answer seem reasonable?

The Problem Solving System was used to solve the following problem:

Mary has ten marbles. Lennie has thirteen. How many marbles do they have in all?

- 1. Mary has ten marbles. Lennie has thirteen. How many marbles do they have in all?
- 2. Mary 10 marbles Lennie – 13 marbles
- 3. How many marbles in all?
- 4. Add
- 5. A little over 20 marbles (10 + 10 = 20)
- 6. 10 +13 23 marbles
- 7. The final sum of 23 marbles is close to the estimated answer of 20 marbles. The final result is reasonable.

D Be sure to label answers whenever possible. For example: marbles, grams, pounds, feet, dogs, etc.

Þ

Some problems may require several steps to solve. Some may have more than one correct answer. And some problems may not have a solution.

For some problems, you have to write two or three equations to solve the problem. For others, you may need to make charts or lists of information, draw pictures, find a pattern, or even guess and check. Sometimes you have to work backwards from a sum, product, difference, or quotient, or simply use your best logical thinking.

List/Chart

Marty's library book was six days overdue. The fine is \$.05 the first day, \$.10, the second, \$.20 the third day, and so on. How much does Marty owe?

Marty's library book was six days overdue. The fine is \$.05 the first day, \$.10, the second, \$.20 the third day, and so on. How much does Marty owe?

Days123456Fine
$$\$.05$$
 $\$.10$ $\$.20$ $\$.40$ $\$.80$ $\$1.60$

Answer: \$1.60

Veronica, Archie, and Betty are standing in line to buy tickets to a concert. How many different ways can they order themselves in line?

Veronica, Archie, and Betty are standing in line to buy tickets to a concert. How many different ways can they order themselves in line?

Veronica Archie	Veronica Betty	Archie Veronica	Archie Bettv
Betty	Archie	Betty	Veronica
Betty	Betty		
Veronica	Archie		
Archie	Veronica		

Answer: 6 ways

Find a Pattern

Jenny's friend handed her a code and asked her to complete it. The code read 1, 2, 3 Z 4, 5, 6 Y 7, 8, 9 X_____. How did Jenny fill in the blanks?

Jenny's friend handed her a code and asked her to complete it. The code read 1, 2, 3 Z 4, 5, 6 Y 7, 8, 9 X . How did Jenny fill in the blanks?

Answer: 10, 11, 12 W

Draw a Picture

Mary is older than Jamie. Susan is older than Jamie, but younger than Mary. David is younger than Jamie. Who is oldest?

Mary is older than Jamie. Susan is older than Jamie, but younger than Mary. David is younger than Jamie. Who is oldest?

Answer: Mary is oldest.

Guess and Check

Farmer Joe keeps cows and chickens in the farmyard. All together, Joe can count 14 heads and 42 legs. How many cows and how many chickens does Joe have in the farmyard?

Farmer Joe keeps cows and chickens in the farmyard. All together, Joe can count 14 heads and 42 legs. How many cows and how many chickens does Joe have in the farmyard?

6 cows +8 chickens	Guess a number of cows. Then add	6 cows = 24 legs +8 chickens = 16 legs
14 heads	the number of chickens to arrive at the sum of 14 heads. Then check the total legs.	40 legs
7 cows <u>+7 chickens</u> 14 heads	Adjust your guesses. Then check again until you solve the problem.	7 cows = 28 legs +7 chickens = 14 legs 42 legs

Answer: 7 cows and 7 chickens

Work Backwards

Marsha was banker for the school play. She took in \$175 in ticket sales. She gave Wendy \$75 for sets and costumes and Paul \$17.75 for advertising and publicity. After paying for the props, Marsha had \$32.25 left. How much did the props cost?

Marsha was banker for the school play. She took in \$175 in ticket sales. She gave Wendy \$75 for sets and costumes and Paul \$17.75 for advertising and publicity. After paying for the props, Marsha had \$32.25 left. How much did the props cost?

\$ 175.00 tickets	\$ 82.25
- 75.00 costumes	- 32.25
\$ 100.00	\$ 50.00 cost of props

- 17.75 advertising \$ 82.25

Logical Reasoning

Jim challenged Sheila to guess his grandmother's age in ten questions or less. It took her six. Here's what Sheila asked:

Jim challenged Sheila to guess his grandmother's age in ten questions or less. It took her six. Here's what Sheila asked:

"Is she less than fifty?" "No."	50+ years old
"Less than seventy-five?" "Yes."	50 to 74 years
	old
"Is her age an odd or even number?"	
"Odd."	ends in 1, 3, 5,
	7 or 9
"Is the last number less than or equal to	
five?" "No."	ends in 7 or 9
"Is it nine?" "No."	ends in 7 – 57
	or 67
"Is she in her sixties?" "No."	57 years old

Solve for each of the given problems.

Jane worked twenty-three hours. Michael worked 1. seven. How many more hours did Jane work than Michael? 2. A small business employs 39 men and 18 women. How many more men than women work at this small business? 3. There are only 70 days until Paul's birthday. How many weeks until Paul's birthday? The test your teacher gave you consists of 5 sections, 4. each of which have 12 questions. How many questions are on the test all together? If Jane watched 7 hours of TV on Sunday, 8 hours of 5. TV on Monday, 4 hours of TV on Tuesday, 3 hours of TV on Wednesday, 4 hours of TV on Thursday, 6 hours of TV on Friday, and 9 hours of TV on Saturday. How many hours of TV did Jane watch from Monday to Saturday? 6. Jane can type 5 pages an hour. How many hours will be needed to type 160 pages?

Answer Key

Book 14014 – Whole Numbers

 Page 10
 Row 1: XXXI, V, XXIX

 Row 2: VI, XXX, XII

 Row 3: XV, XXXVII, XXI

 Row 4: III, XX, XXIII

 Row 5: 31, 4, 11

 Row 6: 15, 33, 30

 Row 7: 35, 20, 16

 Row 8: 2, 1, 6

- Page 15
 2.
 27
 3.
 1478
 4.
 659
 5.
 90
 6.
 1464

 7.
 458
 8.
 66
 9.
 1898
 10.
 520
 11.
 453

 12.
 1472
 13.
 555
 14.
 205
- 2. three hundred eight 3. one thousand, five Page 15 hundred fifty-seven **4.** sixty-three **5.** one thousand, three hundred twenty-five 6. ninety-eight 7. twenty-three 8. one thousand, six hundred twenty-four 9. eightyseven 10. six 11. one thousand, fifty 12. eight hundred thirty-one 13. fifty 14. seven hundred seventy-four 15. eighty-five 16. one thousand, three hundred twenty-one **17.** one thousand, six hundred ninety-four 18. one hundred seventeen

Page 20	2. Hundreds 3. Thousands 4. Thousands
	5. Tens 6. Thousands 7. Tens 8. Ones
	9. Ones 10. Millions 11. Millions
	12. Ones 13. Ones 14. Tens 15. Ones
	16. Tens 17. Ones 18. Ten Thousands
	19. Ones 20. Hundred Thousands 21. Ones
	22. Tens 23. Millions 24. Thousands
25. Ten Thousands 26. Hundreds	25. Ten Thousands 26. Hundreds
	27. Thousands 28. Hundred Thousands
	29. Ones 30. Ten Thousands
Page 25	1. 43 2. 336 3. 4550 4. 67000
	5. 890130 6. , 237, 238, 239 7. 38
	8. 4 paintbrushes 9. 5307 10. 67223
Page 32	1. 189 2. 145 3. 70 4. 13 5. 1126
	6. 1714 7. 206 8. 1009 9. 457
	10. 284 11. 310 12. 317 13. 690
	14. 797 15. 756 16. 221 17. 6422
	18. 10480 19. 10591 20. 12307
	21. 89232 22. 85504 23. 97736
	24. 52247 25. 883626 26. 1143890
	27. 1710178 28. 783498
Dogo 33	1 71 7 877 3 200 4 1355

- Page 33
 1.
 71
 2.
 877
 3.
 200
 4.
 1355

 5.
 11207
 6.
 92739
 7.
 1739500

 8.
 775574
 9.
 88799
 10.
 10200
- Page 36
 1.
 18
 2.
 21
 3.
 55
 4.
 3
 5.
 288

 6.
 97
 7.
 52
 8.
 4
 9.
 57
 10.
 7

 11.
 117
 12.
 114
 13.
 291
 14.
 299

15. 5116. 8117. 345518. 547019. 22020. 270821. 405922. 1518923. 206824. 3626725. 62745726. 61213627. 32412128. 510688

- Page 37
 2. 89
 3. 65
 4. 99
 5. 20
 6. 53

 7. 97
 8. 3
 9. 35
 10. 44
 11. 56

 12. 91
 13. 69
 14. 91
 15. 9752
 16. 84

 17. 82
 18. 59
- Page 45
 1. 40
 2. 336
 3. 184
 4. 3000
 5. 7254

 6. 3400
 7. 5621
 8. 32028
 9. 29906

 10. 55380
 11. 9522
 12. 59920

 13. 15606
 14. 20440
 15. 66216

 16. 11288
 17. 23240
 18. 31752

 19. 64990
 20. 16992
 21. 64320

 22. 242469
 23. 151656
 24. 341106

 25. 138904
 26. 374500
 27. 316680

 28. 63963
 29. 556320
 30. 46760
- Page 461. 39502. 609003. 47204. 9605. 2944556. 7427647. 431008. 9050
- Page 50
 1. 4r2
 2. 8r5
 3. 7r1
 4. 77r3

 5. 4r9
 6. 27r4
 7. 32r7
 8. 5r1

 9. 34r3
 10. 65r2
 11. 4r1
 12. 6r2
- Page 51
 1. 4 r 26
 2. 4 r 122
 3. 1 r 10
 4. 88

 5. 7 r 28
 6. 1 r 445
 7. 13 r 13
 8. 70

Page 611. 16 hours2. 21 more men3. 10 weeks4. 60 questions5. 34 hours6. 32 hours